The Mechanism of Swing Absorption of Fast Magnetosonic Waves in Inhomogeneous Media

نویسنده

  • B. Roberts
چکیده

The recently suggested swing interaction between fast magnetosonic and Alfvén waves (Zaqarashvili & Roberts, 2002a) is generalized to inhomogeneous media. We show that the fast magnetosonic waves propagating across an applied non-uniform magnetic field can parametrically amplify the Alfvén waves propagating along the field through the periodical variation of the Alfvén speed. The resonant Alfvén waves have half the frequency and the perpendicular velocity polarization of the fast waves. The wavelengths of the resonant waves have different values across the magnetic field, due to the inhomogeneity in the Alfvén speed. Therefore, if the medium is bounded along the magnetic field, then the harmonics of the Alfvén waves, which satisfy the condition for onset of a standing pattern, have stronger growth rates. In these regions the fast magnetosonic waves can be strongly ‘absorbed’, their energy going in transversal Alfvén waves. We refer to this phenomenon as ‘Swing Absorption’. This mechanism can be of importance in various astrophysical situations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Swing Absorption ’ of fast magnetosonic waves in inhomogeneous media

The recently suggested swing interaction between fast magnetosonic and Alfvén waves (Zaqarashvili & Roberts 2002a) is generalized to inhomogeneous media. We show that the fast magnetosonic waves propagating across an applied non-uniform magnetic field can parametrically amplify the Alfvén waves propagating along the field through the periodical variation of the Alfvén speed. The resonant Alfvén...

متن کامل

Effects of mass flow on resonant absorption and on over-reflection of magnetosonic waves in low β solar plasmas

The influence of a stationary mass flow on driven resonant MHD waves is studied for incoming slow and fast magnetosonic waves with frequencies in the slow and the Alfvén continua. In addition to the classic resonant absorption already present in a static plasma, driven resonant waves can also undergo overreflection. Depending on the strength of the equilibrium flow a variety of resonant MHD wav...

متن کامل

Influences of Heterogeneities and Initial Stresses on the Propagation of Love-Type Waves in a Transversely Isotropic Layer Over an Inhomogeneous Half-Space

In the present paper, we are contemplating the influences of heterogeneities and pre-stresses on the propagation of Love-type waves in an initially stressed heterogeneous transversely isotropic layer of finite thickness lying over an inhomogeneous half space. The material constants and pre-stress have been taken as space dependent and arbitrary functions of depth in the respective media. To sim...

متن کامل

A Higher Order B-Splines 1-D Finite Element Analysis of Lossy Dispersive Inhomogeneous Planar Layers

In this paper we propose an accurate and fast numerical method to obtain scattering fields from lossy dispersive inhomogeneous planar layers for both TE and TM polarizations. A new method is introduced to analyze lossy Inhomogeneous Planar Layers. In this method by applying spline based Galerkin’s method of moment to scalar wave equation and imposing boundary conditions we obtain reflection and...

متن کامل

Fast magnetosonic waves in pulsar winds

Fast magnetosonic waves in a magnetically-dominated plasma are investigated. In the pulsar wind, these waves may transport a significant fraction of the energy flux. It is shown that the nonlinear steepening and subsequent formation of multiple shocks is a viable mechanism for the wave dissipation in the pulsar wind. The wave dissipation both in the free pulsar wind and beyond the wind terminat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004